Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chem ; 94(43): 15117-15123, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2076958

ABSTRACT

The specificity of CRISPR-Cas12 assays is attractive for the detection of single nucleotide polymorphisms (SNPs) implicated in, e.g., cancer and SARS-CoV-2 variants. Such assays often employ endpoint measurements of SNP or wild type (WT) activated Cas12 trans-cleavage activity; however, the fundamental kinetic effects of SNP versus WT activation remain unknown. We here show that endpoint-based assays are limited by arbitrary experimental choices (like used reporter concentration and assay duration) and work best for known target concentrations. More importantly, we show that SNP (versus WT) activation results in measurable kinetic shifts in the Cas12 trans-cleavage substrate affinity (KM) and apparent catalytic efficiency (kcat*/KM). To address endpoint-based assay limitations, we then develop an assay based on the quantification of Michaelis-Menten parameters and apply this assay to a 20 base pair WT target of the SARS-CoV-2 E gene. We find that the kcat*/KM measured for WT is 130-fold greater than the lowest kcat*/KM among all 60 measured SNPs (compared to a 4.8-fold for endpoint fluorescence of the same SNP). KM also offers a strong ability to distinguish SNPs, varies 27-fold over all the cases, and, importantly, is insensitive to the target concentration. Last, we point out trends among kinetic rates and SNP base and location within the CRISPR-Cas12 targeted region.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , CRISPR-Cas Systems/genetics , Polymorphism, Single Nucleotide , COVID-19/diagnosis
2.
Proc Natl Acad Sci U S A ; 117(47): 29518-29525, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-910341

ABSTRACT

The rapid spread of COVID-19 across the world has revealed major gaps in our ability to respond to new virulent pathogens. Rapid, accurate, and easily configurable molecular diagnostic tests are imperative to prevent global spread of new diseases. CRISPR-based diagnostic approaches are proving to be useful as field-deployable solutions. In one basic form of this assay, the CRISPR-Cas12 enzyme complexes with a synthetic guide RNA (gRNA). This complex becomes activated only when it specifically binds to target DNA and cleaves it. The activated complex thereafter nonspecifically cleaves single-stranded DNA reporter probes labeled with a fluorophore-quencher pair. We discovered that electric field gradients can be used to control and accelerate this CRISPR assay by cofocusing Cas12-gRNA, reporters, and target within a microfluidic chip. We achieve an appropriate electric field gradient using a selective ionic focusing technique known as isotachophoresis (ITP) implemented on a microfluidic chip. Unlike previous CRISPR diagnostic assays, we also use ITP for automated purification of target RNA from raw nasopharyngeal swab samples. We here combine this ITP purification with loop-mediated isothermal amplification and the ITP-enhanced CRISPR assay to achieve detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA (from raw sample to result) in about 35 min for both contrived and clinical nasopharyngeal swab samples. This electric field control enables an alternate modality for a suite of microfluidic CRISPR-based diagnostic assays.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , CRISPR-Cas Systems , Isotachophoresis/methods , Microfluidics/methods , Humans , Nasal Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL